5608134

PROCESS FOR PREPARING AN EFFECTIVE CATALYST FOR N-PARAFFINS HYDROISOMERIZATION

Perego Carl; Bellussi Giuseppe; Calemma Vincenzo Carnate, ITALY assigned to Eniricerche S p A

P1 contacting an n-paraffin or n-paraffin mixture with a difunctional catalyst; wherein said difunctional catalyst comprises: (a) an X-ray amorphous silica-alumina gel with a molar ratio of SiO2:Al2O3 in the range of from 30:1 to 500:1, with a porosity in the range of 0.3 to 0.6 ml/g, and with a prevailing pore diameter in the range of from 10 to 30 #521, and +RE+P1 (b) one or more metals from Group VIIIA in an amount of from +B 0.05 +L to +B 5+L %by wt. +RE+RE+RE+RE+RE +RE+RE +RE+RE +REwt. +REwt. +RE

5609750

BORON-CONTAINING CATALYST

Nat Pieter J; de Booys Jacob L; Schoonhoven Johannes W F M Amersfoort, NETHERLANDS assigned to Akzo Nobel NV

A catalyst composition for converting hydrocarbons in a hydrotreatment process (hydrodesulfurization and/or hydrodenitrogenization) and simultaneously cracking them, containing an alumina-silica-alumina carrier built up from silica-alumina. which alumina and on hydrogenation metals, such as molybdenum, nickel, and/or cobalt, have been provided and which also contains a catalytically active amount of boron, generally in the range of 1 to 20 wt. %. The invention also relates to a process for the preparation of such a catalyst, with boron being provided ahead of the Group VIII component. The carrier material used may be made up of mixtures of alumina and amorphous silica-alumina or of mixtures of alumina and silica-coated alumina. The catalyst composition is highly suitable for converting vacuum gas oil into middle distillate oils by hydrotreating.

5610112

METHOD FOR MODIFYING A CATALYST

Lago Rudolph; Marler David; McCullen Sharon B Yardley, PA, UNITED STATES assigned to Mobil Oil Corporation

A process for shape selective hydrocarbon conversion involves contacting a hydrocarbon feedsteam under conversion conditions with a modified catalytic molecular sieve which has been modified by being pre-selectivated with a first silicon source, then steamed. The feedstream may also contain a second silicon source which is a high efficiency para-xylene selectivating agent. The method for modifying the molecular sieve is also described.

5611912

PRODUCTION OF HIGH CETANE DIESEL FUEL BY EMPLOYING HYDROCRACKING AND CATALYTIC DEWAXING TECHNIQUES

Han Scott; Heck Roland; Ehlers Michael E Lawrenceville, NJ, UNITED STATES assigned to Mobil Oil Corporation

A process for the production of diesel fuel with a high cetane number at a low cloud point, which involves hydrocracking highly aromatic fractions obtained from catalytic cracking operations. The fraction of hydrocracker effluent which boils between about 400°F. ($205^{\circ}C$) and 1000°F. ($538^{\circ}C$) is subsequently catalytically dewaxed in order to obtain a cloud point of no more than 41°F. ($5^{\circ}C$). The hydrocracker effluent fraction is preferably recycled to the hydrocracking step prior to dewaxing.

5612273

CATALYST FOR THE HYDROISOMERIZATION OF CONTAMINATED HYDROCARBON FEEDSTOCK

Prada Ricardo; Torrealba Mariana Tejada Jorge; Romero Yilda; Reyes Edito Caracas, VENEZUELA assigned to Intevep S A

A catalyst system for treating sulfur and nitrogen contaminated hydrocarbon feedstock including a matrix, at least one support medium substantially uniformly distributed through said matrix, a first catalytically active metal phase supported on said support medium, said first catalytically active metal phase comprising a first metal and a second metal each selected from group VIII of the periodic table of elements, said first metal being different from said second metal, a second catalytically active metal phase supported on said matrix, said second catalytically active metal phase comprising a third metal and a fourth metal each selected from group VIII of the periodic table of elements and a fifth metal selected from group VIb of the periodic table of elements, said third metal being different from said fourth metal. The catalyst system is prepared in a method which provides the system with excellent hydroisomerization, HDS, and HDN properties.

5612274

METHOD OF PREPARING TRANSALKYLATION CATALYST

Wu An-hsiang; Drake Charles A Bartlesville, OK, UNITED STATES assigned to Phillips Petroleum Company

A Group VIII metal-promoted zeolite (preferably Pt-promoted H-mordenite) is contacted with ammonium hexafluorosilicate and hydrogen gas at a temperature of about 100°-450°C The obtained material is an effective catalyst for the transalkylation of aromatic hydrocarbons.

5614079

CATALYTIC DEWAXING OVER SILICA BOUND MOLECULAR SIEVE

Farnos Maria D; Forbus Thomas R; McWilliams John P; Shihabi David Wilmington, DE, UNITED STATES assigned to Mobil Oil Corporation

A molecular sieve catalyst is composited with an inert binder derived from an organic silicon source and organic polymer. The catalyst is used in dewaxing of petroleum chargestocks.

5614082

CATALYTIC REFORMING PROCESS WITH SULFUR ARREST

Russ Michael B; Sechrist Paul Villa Park, IL, UNITED STATES assigned to UOP

A catalyst system comprises a physical mixture of a conversion catalyst and a sulfur sorbent to accommodate small quantities of sulfur from a hydrocarbon feedstock. Preferably, the physical